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We investigate here a mechanical system with gyroscopes which is on the three 
degrees of freedom suspension and moves near the Earth's surface. The center 
of mass of the system and the center of suspension do not coincide. A spe- 
cial case of such a mechanical system is a system of a horizontal gyrocompass 
or a two-gyroscope vertical. The theory of these systems has been given by 
Ishlinskii in 1 and 2 . Klimov in 3 obtained the conditions which must 
satisfy an arbitrary moving pendulous gyroscopic system in order to have a 
position of relative equilibrium at which the z-axis of the system, passing 
through the center of mass and the center of suspension, coincides with the 
line directed toward the Earth's center. 

We shall demonstrate that the conditions of Klimov remain valid for non- 
sphericity of the Earth gravitational field, and investigate the perturbed 
motion of the pendulous gyroscopic system, meaning its oscillations about 
its position of relative equilibrium. We shall demonstrate that this rn;ti;z 
can be reduced to the motion of the physical pendulum investigated in 
5. 

1. Let us consider a three degrees of freedom mechanical system placed 
on a moving object in such a way that the center of mass of the system and 
the center of suspension do not coincide. The system may contain different 
mechanical gadgets which move with respect to each other, among others, 
gyroscopes. Such a mechanical system can be called a pendulous gyroscopic 
system. 

Let us introduce in our system the trihedron Oxyz with its origin in 
the center of suspension, the s-axis coinciding with the line from the cen- 
ter of mass to the center of suspension. Let a be the distance between 
the center of mass c and the center of suspenr on 0 . Then the coordi- 
nates of the center of mass are 

ZC = yc = 0, zc=-d (1.1) 

We shall find conditions under which the s-axis of the system in the 
position of relative equilibrium coincides with the line in the direction 
toward the Earth's center. 

Using the angular momentum theorem for the whole system as it moves about 
the center of mass we obtain 

K'=M (1.2) 

Here and further on the dot following a letter will signify a time deriva- 
tive. K is the total angular momentum of the system, M is the total 
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moment with respect to the center of suspension. The total moment n is 
created by the Earth's attraction forces and the.inertia forces of the trans- 
latory motion of the center of suspension. 

We shflll reduce the action of the attraction forces to the one force F 
applied at the center of mass and coinciding with the direction of the gravi- 
tational field at the point 0 . The nonhomogeneity of the gravitational 
field inside the body is neglected. We shall add to the moment of the force 
F the noment of the inertia forces of the translatory motion and also an 
artificially constructed moment M* . From (1.1) and (1.2) we obtain 

K’ = a X (F - nzr.‘) -t M* (1.3) 

Here r is the radius vector of the point 0 originating at the Earth's 
center 01 , a is the radius vector at the pain, C 0riginatir.g at the 
point 0 . Let the trihedron xyz in the position of relative equilibrium 
be denoted by xoyo=o - Then 

lT = FxOxo + Flloyo + FzOzo. M* = Mzo*xo + hfy,*yo + Mzo*zo (1.4) 

Here XQYQZO are the unit vectors along the corresponding axes. Since 
in the positlon of relative equilibrium the vector a is collinear with 
vector r , it follows by (1.3) and (1.4) that 

K'--aXmr"+(M20*- aFy,) xo + (Mllo* + aF,) YO + MzO*Zo (1.5) 

Let 
M *=-UP 

l/o X0’ M *=aF M *=0 x0 UO’ zo V-6) 

Then Equation (1.5) becomes 

K' = -a X mr"= 0 (1.7) 

We require that the condition 
a = kr (1.8) 

be satisfied, that is we reouire that the distance between the center of 
mass and the center of suspension be proportional to the distance to the 
Earth's center. In order to satisfy this condition when r is variable we 
must have an input with the values of r . 

If (1.8) is satisfied, then in the position of relative equilibrium 
a = -kr, a' X r' = 0, hence Equation (1.7) can be written in the form 

K' = km (r X r')' (1.9) 

Now it can be integrated from which we obtain 

K - ma X r' = b = const (1.10) 

Substituting b = 0 , introducing the notation 17 = r' and projecting on 
the axes xoyozo , we find 

K, + mavvo = 0, Kilo - mavxo = 0 Kzo = 0 (1.11) 

The conditions (1.6), (1.8), (1.11) appear to be the conditions which the 
parameters of the system must satisfy, to make the z-axis coincide with the 
line in the direction toward the Earth's center in the position of relative 
equilibrium. Besides, the initial conditions must also be satisfied. Namely, 
at the initial moment the vector a should be oriented along 7 , and the 
initial rate of change of the orientation of the vector a should equal the 
initial rate of change of the orientation of the vector r . 

The conditions (1.8) and (1.11) were derived by Klimov 3 who used a 
different notation from ours. We repeated here the derivation of (1.8) and 
(1.11) because later on we need certain intermediate relations arising in 
the derivation. We shall also show that nonsphericity of the Earth gravi- 
tational field does not change the conditions (1.8), (l.ll), and requires 
only the supplementary conditions (1.6). 

From the conditions (l-6), (1.8), (1.11) we obtain as special cases the 
conditions for the existence of the position of relative equilibrium of a 
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physical pendulum 4 and 5 , of a horizontal gyrocompass 1 , and a two- 
gYrosC0plc vertical 2 . 

2. We shall derive the equations for small oscillations of our pendulous 
gyroscopic system about its position of relative equilibrium. These oscil- 
lations occur when the conditions (1.61, (1.81, (1.11) and initial conditions 
are not exactly satisfied. Varying Equation (1.2) in the neighborhood of 
the relative equilibrium we have 

6K’ = 6M (2.1) 

The angular momentum K is derived from (1.10) where b = 0, a = -kr. 

Thus 
6K = mksr x r' + mkr X dr’ +AK (2.2) 

Here AK is a certain instrumental error 

r = no, 6r = 6rx, -I- 6yy, + Arzo (2.3) 

where Ar is the error in the input of r . 

In oraer to obtain hM,we notice that the variation of the moment is deter- 
mined from the variation 8a the variation of the correcting moment 6M* 
and from the moment AM arising from instrumental errors (for example the 
fractional moment in the suspension or the moment of the residual inbalance). 
Consequently, taking into account the expression for M contained in the 
right-hand side of Equation (1.3) we find 

CM = 6a & (F - mr")+ 6M* -I- AM (2.4) 

where the quantity 6a is determined from Equation 

6a = -k6r - Aaz, (2.5) 

The first term in the right-hand side is caused by the error in the input 
of r and by the deviation of the z-axis from the direction toward the 
Earth's center, the second term by the instrumental error Aa arising from 
the inaccurate setting of the distance a between the center of the suzpen- 
sion and the center of mass of the system. 
ing that 

Differentiating (2.2) and observ- 

fr' X r' + r' X 6r' = 0 (2.8) 
we find 

fK' = km& X r” i- kmr X 6r" i- AK’ 

We have to substitute now (2.7) and (2.4) in (2.1). 

Before performing this substitution it is convenient to simplify a little 
Expression (2.l)),in order to make the variation of the moment easier. Prior 
to that we can also neglect the small variation 4 of the moment M* 
which corrects the action of the horizontal corn onent 
field. Returning to the first equation of (1.4 P 

of the gravitational 
we obtain 

6a x F = 6a X (F,XO + FllOyo -I- FZ,zo) (2.8) 

Neglecting in the right-hand side the product of &a by the sum of the 
first and the second term inside parantheses, which is of the second order 
of smallness, and observing that using the same accuracy we can set 
&,=,;pza,/,ra9 where m 

, we find 
is the product of the gravitational constant by the 

6M = 6a x (-pmr-“zo - mr”) -I- AM (2.9) 
Substituting (2.5) into (2.9) we obtain Formula 

8M -_ mk& x (p-b,, + r") + mAa% X r” + AM (2.10) 

We substitute now (2.10) and (2.7) into (2.1). After collecting similar 
terms and grouping them in order to be able to use the first Equation (2.3) 
we obtain Equation 

7on.r X (Sf -I- pr+%r) = -AK’ + AM i- mAaz,, X r” (2.11) 

This equation turns out to be the vector eouation for small oscillations 
about the position of relative equilibrium of-the pendulous gyroscopic system 
SatiSfYing (with certain errors) the conditions (1.6), (1.8) and (1.11). 
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3. In order to obtain the scalar equations we must substitute in (2.11) 
the expressions for r and 6r from (2.3) and project the result on the 
axes z,,,)J,,,z'IJ taking also into account 

where WF,,,~ @,i,m- a,#_are the components of the absolute angular velocity of the 
trihedron r,,?i,,sct on its axes. These substitutions and projections result, 
after appropriate grouping and simplifications, in Equations 

Let a and b be the angles of small deviations of the z-axis from the 
direction toward the Earth's center in'the planes zozo and zo!/oJo; respec- 
tively. It is obvious that a= r-16x, 8 = -r-l&y. Consequently, Equations 
(3.2) control the small oscillations of the z-axis about the line Jirected 
toward the Earth's center. The homogeneous system of the first two equations 
(3.2) is the same as for the small oscillations of the pendulum of Schuler 
4 and also the same as the first group of equations for the errors of an 
inertial system with two accelerometers 6 . The equations for small oscil- 
lations in a two-gyroscopic vertical and in a horizontai gyrocompass obtained 
in 1 and 2 can also be reduced to the system of the first two equations 
(3.2). 

Let us draw attention to the following interesting circumstance. In the 
papers 1 and 2 the equations *for small oscillations were obtained from the 
precessional formulation of the problem , whereas our Equations (3.2) which 
control small oscillations of a horizontal gyrocompass and a two-gyroscopic 
vertical were derived without using the precessional theory. Consequently, 
the homogeneous equations for small oscillations of the z-axis in a horizon- 
tal gyrocompass and in a two-gyroscopic vertical which were obtained in 1 
and 2 by using the precessional theory can be obtained and are valid outside 
the precessional theory if all the three conditions (1.12) are satisfied. 
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